Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy.

نویسندگان

  • Serena Giovinazzi
  • Dhruv Bellapu
  • Viacheslav M Morozov
  • Alexander M Ishov
چکیده

Microtubule-poisoning drugs, such as Paclitaxel (or Taxol, PTX), are powerful and commonly used anti-neoplastic agents for the treatment of several malignancies. PTX triggers cell death, mainly through a mitotic arrest following the activation of the spindle assembly checkpoint (SAC). Cells treated with PTX slowly slip from this mitotic block and die by mitotic catastrophe. However, cancer cells can acquire or are intrinsically resistant to this drug, posing one of the main obstacles for PTX clinical effectiveness. In order to override PTX resistance and increase its efficacy, we investigated both the enhancement of mitotic slippage and the block of mitotic exit. To test these opposing strategies, we used physiological hyperthermia (HT) to force exit from PTX-induced mitotic block and the anaphase-promoting complex/cyclosome (APC/C) inhibitor, proTAME, to block mitotic exit. We observed that application of HT on PTX-treated cells forced mitotic slippage, as shown by the rapid decline of cyclin B levels and by microscopy analysis. Similarly, HT induced mitotic exit in cells blocked in mitosis by other antimitotic drugs, such as Nocodazole and the Aurora A inhibitor MLN8054, indicating a common effect of HT on mitotic cells. On the other hand, proTAME prevented mitotic exit of PTX and MLN8054 arrested cells, prolonged mitosis, and induced apoptosis. In addition, we showed that proTAME prevented HT-mediated mitotic exit, indicating that stress-induced APC/C activation is necessary for HT-induced mitotic slippage. Finally, HT significantly increased PTX cytotoxicity, regardless of cancer cells' sensitivity to PTX, and this activity was superior to the combination of PTX with pro-TAME. Our data suggested that forced mitotic exit of cells arrested in mitosis by anti-mitotic drugs, such as PTX, can be a more successful anticancer strategy than blocking mitotic exit by inactivation of the APC/C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APC/CCdh1 Targets Aurora Kinase to Control Reorganization of the Mitotic Spindle at Anaphase

BACKGROUND Control of mitotic cell cycles by the anaphase-promoting complex or cyclosome (APC/C) ubiquitin ligase depends on its coactivators Cdc20 and Cdh1. APC/C(Cdc20) is active during mitosis and promotes anaphase onset by targeting mitotic cyclins and securin. APC/C(Cdh1) becomes active during mitotic exit and has essential targets in G1 phase. It is not known whether targeting of substrat...

متن کامل

Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function

Warsaw breakage syndrome (WABS) is caused by defective DDX11, a DNA helicase that is essential for chromatid cohesion. Here, a paired genome-wide siRNA screen in patient-derived cell lines reveals that WABS cells do not tolerate partial depletion of individual APC/C subunits or the spindle checkpoint inhibitor p31(comet). A combination of reduced cohesion and impaired APC/C function also leads ...

متن کامل

Control of mitotic exit and cytokinesis by the APC/C.

Inactivation of key substrates by ubiquitin-mediated proteolysis controls the passage of cells through mitosis. The APC/C (anaphase-promoting complex/cyclosome) targets a large number of substrates for proteolysis during the final steps of mitosis and cytokinesis, but the significance of these targeting events, particularly in mammalian cells, is largely unknown. In this review, I summarize wha...

متن کامل

The spindle and kinetochore–associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit

The spindle and kinetochore-associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA-mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation ...

متن کامل

Pds1p of budding yeast has dual roles: inhibition of anaphase initiation and regulation of mitotic exit.

Progression through mitosis is controlled by protein degradation that is mediated by the anaphase-promoting complex/cyclosome (APC/C) and its associated specificity factors. In budding yeast, APC/C(Cdc20) promotes the degradation of the Pds1p anaphase inhibitor at the metaphase-to-anaphase transition, whereas APC/C(Cdh1) promotes the degradation of the mitotic cyclins at the exit from mitosis. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell cycle

دوره 12 16  شماره 

صفحات  -

تاریخ انتشار 2013